Integration molekularer Komponenten in funktionale makroskopische Systeme / Integration of Molecular Components in Functional Macroscopic Systems

Bewilligungen / Grants 2009


Optoelectronic FRET gates: electrically controlled accumulation of excitation energy for switches and sensors

Bewilligung: 20.01.2009  Laufzeit:  3 Jahre

The project aims to develop novel material systems which exploit a control of the flow of excitation energy rather than charge current to achieve macroscopic functionality such as lasing, photovoltaic energy conversion, sensing, or information processing. Intramolecularisation of intermolecular material properties, for example interchain interactions in conjugated polymers, will allow us to form macromolecular entities which enable intermolecular material functions such as charge separation and exciton storage, which were previously virtually exclusively intermolecular. Fluorescent molecular end-caps will offer a coupling pathway between individual polymer chains in the solid by allowing electrically-gated FRET. Storage of excitation energy on discrete macromolecular entities will promote controlled accumulation of excitation energy, a phenomenon of relevance to devices as far ranging as lasers and solar cells. The project will explore all steps in the research chain up to the integration level to arrive at macroscopic optoelectronic switches and sensors.

Universität Bonn
Kekulé-Institut für Organische Chemie und Biochemie
Prof. Dr. Sigurd Höger
Gerhard-Domagk-Straße 1
53121 Bonn
Tel.: 0228 73 6127
Fax: 0228 73 5662

The University of Utah, Salt Like City
Department of Physics
Prof. Dr. John Mark Lupton
115 South 1400 East
USA-Salt Lake City, UT 84112-0830
Tel.: 001 801 581 6408
Fax: 001 801 581 4801

* * * *

Towards molecular engines: cooperative coupling of molecular motors in engineered environments

Bewilligung: 19.02.2009   Laufzeit:  3 Jahre

Das Vorhaben wurde am 17.02.2011 innerhalb Dresdens umgesetzt.

Motivated by the absence of an engine capable of converting chemical energy into mechanical energy without creating heat first, the goal of this project is to hierarchically assemble biomolecular motors into large-scale, functional arrays capable of creating a macroscopic force output. The envisioned molecular engine will consist of a multilayer structure, in which each layer consists of a surface coated with kinesin motor proteins and a surface coated with microtubules. The two surfaces glide with respect to each other as the kinesin motors utilize the chemical energy provided by the hydrolysis of ATP to propel themselves along the microtubules. The team of experimental scientists, theoretical scientists and engineers will develop the scientific understanding and engineering know-how to (1) efficiently couple molecular motors to linear, polar filaments, (2) assemble planar, unipolar arrays of filaments and conformal surfaces, (3) stack motor/filament layers into multilayer structures with enhanced force or velocity of movement, and (4) demonstrate cyclic energy conversion in a Newcomen-type engine.

Columbia University in the
City of New York
Department of Biomedical Engineering
351 Engineering Terrace Mail Code 8904
Prof. Henry Hess, Ph.D.

Max-Planck-Institut für molekulare
Zellbiologie und Genetik, Dresden
Forschungsgruppe Bionanotechnologie
Dr. Stefan Diez

Technische Universität Dresden
Biotechnologisches Zentrum (BIOTEC)
Institut für Biophysik
Prof. Dr. Petra Schwille

Max-Planck-Institut für Physik
komplexer Systeme, Dresden
Abt. Biologische Physik
Prof. Dr. Frank Jülicher

Technische Universität Dresden
B-Cube Zentrum für Innovationskompetenz
Prof. Dr. Stefan Diez
Arnoldstraße 18
01307 Dresden
Tel.: 0351 463 43000
Fax: 0351 463 40322

* * * *