Europaförderung / Support for Europe

Derzeit keine offene Ausschreibung

Bewilligungen / Grants 2013

 

The driving forces for sympatric speciation in Nicaraguan crater lake cichlids - additional support for Europe

Bewilligung:  28.11.2013  Laufzeit:  1 Jahr

In diesem Vorhaben soll die Speziesbildung zweier in jüngster Zeit entstandenen Radiationen (Art-Auffächerungen) von Buntbarschen in Nicaragua untersucht werden. Es gibt Hinweise, dass sich in den beiden Kraterseen Xiloá und Apoyo in den vergangenen Jahrtausenden mindestens drei Arten entwickelt haben, deren Auftreten auf einen der Seen begrenzt ist. Die Antragstellerinnen möchten untersuchen, welche Kräfte diese Aufspaltung verursacht haben. Die neuen Arten unterscheiden sich in den Mikrohabitaten, welche sie nutzen, in einigen phenotypischen Eigenschaften, wie der Körperform und der genutzten Nahrung. Dies wurde von den Antragstellerinnen in Vorstudien bereits untersucht. In dieser Studie sollen nun weitere Faktoren, wie der Einfluss symbiotischer Mikrobiome auf der Haut und im Darm der Fische sowie der lokalen Lichtverhältnisse im Wechselspiel mit Opsin Genen der Spezies betrachtet werden. Dabei könnte es sich jeweils entweder um evolutionäre Triebfedern für die Artenbildung oder sekundär entwickelte Anpassungen handeln. Dies soll in der Studie geklärt werden.

GEOMAR - Helmholtz-Zentrum für
Ozeanforschung Kiel
Marine Ökologie - Evolutionsökologie
Evolutionary Ecology of Marine Fishes
Dr. Olivia Roth
Düsternbrooker Weg 20
24105 Kiel
Tel.: +494316004557
Homepage: http://www.ifm-geomar.de/index.php?id=oroth

Museo Nacional de Ciencias Naturales
Dept. Biodiversity and Evolutionary
Biology, Madrid
Dept. Biodiversity and Evolutionary Biology
Dr. Marta Barluenga
José Gutiérrez Abascal 2
E-28006 Madrid
SPANIEN
Tel.: +34 914111328

* * * *

Extreme Ocean Gravity Waves: Numerical modeling of rogue waves with higher accuracy (additional support for Europe)

Bewilligung:  02.12.2013  Laufzeit:  1 Jahr

At present, the development of rogue wave theory is mostly based on the nonlinear Schrödinger equation (NLSE). This equation is integrable and allows to obtain many results in analytical form. Solutions of this equation have been modeled experimentally in a water tank and show a rather good correspondence with the theory. However, discrepancies do exist. An asymmetry of the experimental data contrary to the analytic solutions was found and traced back to crucial higher order terms ignored in the modeling. Higher order term corrections can be very important when trying to predict the growth of a rogue wave under oceanic conditions. Departures from the predictions of the NLSE have been preliminarily confirmed with the direct modeling of rogue waves based on the Dysthe and Euler equations. Although the main features of the rogue waves up to fifth order have been similar to the
NLSE case, the deviations increase with the length of propagation. Thus, a careful modeling is promising for higher accuracy and for a better understanding of extreme waves. This grant integrates Professor J. M. Soto Crespo, CSIC-Instituto de Optica, Madrid, in an ongoing project on 'Extreme Ocean Gravity Waves: Analysis and Prediction on the Basis of Breather Solutions in Nonlinear Evolution Equation'.

Technische Universität Hamburg-Harburg
Maschinenbau
Arbeitsgruppe für Strukturdynamik
Prof. Dr. Norbert Hoffmann

Consejo Superior de
Investigaciones Científicas (CSIC)
Instituto de Optica, Madrid
Prof. Dr. José Soto Crespo
SPANIEN

Russian Academy of Sciences, Novgorod
Department of Nonlinear Geophysical Processes
Institute of Applied Physics
Prof. Dr. Efim Pelinovsky
RUSSLAND

Kontakt:
Technische Universität Hamburg-Harburg
Maschinenbau
Arbeitsgruppe für Strukturdynamik
Prof. Dr. Norbert Hoffmann
Schlossmuehlendamm 30
21073 Hamburg
Tel.: +49 40 42878 3120
Fax: +49 40 42878 3120
Homepage: http://cgi.tu-harburg.de/~dynwww/

* * * *

Mesoscopic Simulations of Viscoelastic Properties of Networks (additional support for Europe)

Bewilligung:  13.12.2013  Laufzeit:  1 Jahr

The aim of the project is to develop a mesoscopic simulation methodology, and the associated computer code, for predicting the time-dependent collective mechanical response of synthetic and biological networks. Polymer chains will be represented as sequences
of coarse-grained interaction sites, each site standing for approximately five Kuhn segments. Chemical crosslinks will be modelled explicitly, while entanglements will be introduced in the form of slip-springs whose ends are capable of hopping between sites along a chain and which are created or annihilated at dangling ends.The equations of motion and rate constants for slip-spring hops will be derived from a coarse-grained free energy function incorporating conformational entropy, excluded volume and cohesive van der Waals interactions within the polymer. Static (mass density, Kuhn length, free energy density of nonbonded interactions, spatial density of entanglements) and dynamic (friction factors, frequency factors and activation free energies for slip-spring hops) will be extracted in a "bottom up" fashion from atomistic simulations and experimental data on linear melts. Once validated, the method and code will be useful as a "molecular engineering design tool" for polymer networks in materials and biological applications.

Universität Göttingen
Institut für Theoretische Physik
Prof. Dr. Marcus Müller

National Technical University of Athens, Athen
Department of Materials Science and Engineering
Prof. Dr. Doros N. Theodorou
GRIECHENLAND

National Technical University of Athens, Athen
Department of Materials Science and Engineering
Dr. Grigorius Megariotis
GRIECHENLAND

Kontakt:
Universität Göttingen
Institut für Theoretische Physik
Prof. Dr. Marcus Müller
Friedrich-Hund-Platz 1
37077 Göttingen
Tel.: 0551 39 13888
Fax: 0551 39 9631
Homepage: http://www.theorie.physik.uni-goettingen.de/forschung/mm/

* * * *

Nano-apertures loaded with individual molecules - investigation of Focal Adhesion Kinase (additional support for europe)

Bewilligung:  16.12.2013  Laufzeit:  2 Jahre

In the ongoing VW project a novel microscope was developed, which is a hybrid between a single-molecule force spectrometer and a total internal reflection fluorescence microscope. Utilizing this instrument for spectroscopy measurements in tailor-made zero-mode waveguides allows steering individual proteins gradually through their different forcedependent conformations. In parallel, the force-induced binding of fluorescently labelled ligands can be monitored with single-molecule sensitivity. The setup was optimized specifically to investigate protein-based force sensors such as Titin Kinase (TK) and Myosin Light Chain Kinase (MLCK). The aim of this project is to employ the hybrid microscope to investigate how forces generated by actomyosin contraction in focal adhesions regulate conformational and interaction properties of Focal Adhesion Kinase (FAK).

Universität München
Fachbereich Physik
Sektion für Physik
Lehrstuhl für Angewandte Physik
Biophysik & Molekulare Materialien
Prof. Dr. Hermann Eduard Gaub
Amalienstraße 54
80799 München
Tel.: 089 2180 3172
Fax : 089 2180 2050
Homepage: http://www.biophysik.physik.uni-muenchen.de/

Spanish National Cancer Research Centre, Madrid
Department: Structural Biology and Biocomputing
Programme
Dr. Daniel Lietha
Calle Melchor Fernández Almagro, 3
E-28029 Madrid
SPANIEN
Tel.: 0034 917 328 3090
Fax: 0034 912 246 980
Homepage: http://www.cnio.es/ing/