Integration molekularer Komponenten in funktionale makroskopische Systeme / Integration of Molecular Components in Functional Macroscopic Systems

Bewilligungen / Grants 2012

 

Optoelectronic FRET gates: electrically controlled accumulation of excitation energy for switches and sensors (extension)

Bewilligung: 26.03.2012  Laufzeit:  3 Jahre

Novel molecularly mesoscopic material systems are proposed which exploit a control of the flow of excitation energy rather than charge current to achieve macroscopic functionality such as lasing, photovoltaic energy conversion, sensing, or information processing. By intramolecularization of intermolecular material properties, for example interchain interactions in conjugated polymers, macromolecular entities will be formed which enable intermolecular material functions such as charge separation and exciton storage, which were previously virtually exclusively intermolecular. Fluorescent molecular end-caps will offer a coupling pathway between individual polymer chains in the solid by allowing electrically-gated FRET. Storage of excitation energy on discrete macromolecular entities will promote controlled accumulation of excitation energy, a phenomenon of relevance to devices as far ranging as lasers and solar cells. Having made progress in the design and spectroscopy of complex multi-component pi-conjugated materials in the first part of the project, the synthetic methodology will now be expanded to creating ever-larger shape-persistent functional entities with arbitrary definition of form and function.

Universität Bonn
Fachgruppe Chemie
Kekulé-Institut für Organische Chemie
und Biochemie
Prof. Dr. Sigurd Höger
Gerhard-Domagk-Straße 1
53121 Bonn
Tel.: 0228 73 6127
Fax: 0228 73 5662
Homepage: http://www.chemie.uni-bonn.de/oc/forschung/arbeitsgruppen/ak_ho

Universität Regensburg
Naturwissenschaftliche Fakultät II
Institut für Experimentelle und Angewandte Physik
Prof. Dr. John Lupton
Universitätsstrasse 31
93053 Regensburg
Tel.: 0941 943 2081
Fax: 0941 943 4226
Homepage: http://www.physik.uni-regensburg.de/forschung/lupton/

* * * *

Rolled-up integrative bioanalytic microsystem for single cell and biological applications (extension)

Bewilligung: 26.03.2012  Laufzeit:  3 Jahre

The goal of this project is to develop a new bioanalytic microsystem platform for cell growth, manipulation and analysis using rolled-up nanotechnology. Based on the novel "Lab-in-a-tube" concept, a multifunctional device for the observation of single cell behavior in-side transparent microtubes will be designed that can be employed for diverse biological applications. Biocompatible microtubular structures will be developed that will integrate multifunctional components to perform detailed studies on cell biophysics in 3D confinements. The walls of the microtubes with proteins from the extracellular matrix will be integrated enabling the long-term study of cellular changes such as mitosis time, spindle reorientation and DNA damage. Microtubular structures act both as microreactor chamber for cellular growth and also as optical sensors for studying different phenomena occurring within the cells confined in their interior. The multifunctionality of the "Lab-in-a-tube" platform will be further extended by integrating different modules into a single microtubular unit, bringing up several applications such as optofluidics sensors, electrodes for electrochemical control and sensing, magnetic bio-detection and catalytic engines.

Leibniz-Institut für Festkörper- und
Werkstoffforschung Dresden IFW
Institute for Integrative Nanosciences
Dr. Samuel Sánchez, Ph.D.
Helmholtzstrasse 20
01069 Dresden
Tel.: 0351 4659 845
Fax: 0351 4659 782

Leibniz-Institut für Festkörper- und
Werkstoffforschung Dresden IFW
Institut für Integrative Nanowissenschaften (IIN)
Strained Nanoarchitectures
Direktor des IIN
Prof. Dr. Oliver G. Schmidt
Postfach 27 01 16
01171 Dresden
Tel.: 0351 465 9800
Fax: 0351 465 9782
Homepage: http://www.ifw-dresden.de/institutes/iin

* * * *

Nanoscale imaging of magnetic and electric fields: Ultrasensitive magnetic resonance and bioimaging (extension)

Bewilligung: 26.03.2012  Laufzeit:  3 Jahre

A negatively charged nitrogen-vacancy (NV) center in diamond is a solid state system, that can be used as an atomic-sized sensing probe for magnetic and electric fields by optical read-out. The project aims at developing a versatile tool to detect and image small magnetic and electric fields emanating from small molecular compounds to complex united cell structures. It is the aim to achieve magnetic field sensitivities of a few nano Tesla small enough to detect the NMR signal of single molecules and to achieve a spatial resolution of a few nanometers allowing e.g. to detect action potentials and ion currents from single ion channels through a cell membrane. A visionary achievement would e.g. be the integration of high sensitivity NMR detection into microfluidic devices or the imaging of neuronal cell activity over a wide field of view on the single cellular level.

Universität Stuttgart
3. Physikalisches Institut
Prof. Dr. Jörg Wrachtrup
Postfach
70550 Stuttgart
Tel.: 0711 685 65278
Fax: 0711 685 65281
Homepage: http://www.pi3.uni-stuttgart.de/

Universität Ulm
Institut für Quantenoptik
Prof. Dr. Fedor Jelezko
Albert-Einstein-Allee 11
89081 Ulm
Tel.: 0731 502 7750
Fax: 0731 502 7752
Homepage: http://www.quantenoptik.de

* * * *

Nano-apertures loaded with individual molecules (extension)

Bewilligung: 26.03.2012  Laufzeit:  2 Jahre

When the rapidly increasing miniaturization of bio-molecular assays reached the single-molecule level, a new fundamental gap between the nanomolar concentration regime of current optical single-molecule spectroscopy techniques and the nano- to millimolar dissociation constants of typical bio-molecular interactions opened up. This gap will be addressed by placing individual molecules in the aperture of zero mode waveguides. Up to now, the focus was on the design and manufacturing of suitable waveguides, their surface functionalization and their specific optical properties. The data demonstrate that the fluorescence in the nano-apertures is strongly dependent on the distance to the metal surrounding. Now, the efforts will be expanded to place single molecules in nano-apertures using the "cut and paste" technology. First results indicate that single molecules can be placed in the center of the nano-apertures and single-molecule HIV-protease inhibitor screening-assays can be carried out. Additionally, single-molecule FRET in nano-apertures will be established and applied to resolve binding locations of a weak polymerase-DNA interaction. Single molecule force spectroscopy experiments will be performed to activate force sensing kinases.

Technische Universität Braunschweig
Fachbereich Lebenswissenschaften
Institut für Physikalische und Theoretische Chemie
Biophysikalische Chemie - NanoBioSciences
Prof. Dr. Philip Tinnefeld
Hans-Sommer-Straße 10
38106 Braunschweig
Tel.: 0531 391 5330
Fax: 0531 391 5334
Homepage: http://www.tu-braunschweig.de/pci/forschung/tinnefeld

Universität München
Fachbereich Physik
Sektion für Physik
Lehrstuhl für Angewandte Physik
Biophysik & Molekulare Materialien
Prof. Dr. Hermann Eduard Gaub
Amalienstraße 54
80799 München
Tel.: 089 2180 3172
Fax: 089 2180 2050
Homepage: http://www.biophysik.physik.uni-muenchen.de/

* * * *

Tailored self-assembling peptides as potent enhancers of retroviral gene transfer

Bewilligung: 23.03.2012  Laufzeit:  3 Jahre

Retroviral and lentiviral gene transfer allows the stable introduction of genetic material into cells and is commonly used in basic research and in clinical gene therapy trials aimed to treat genetic disorders, malignancies and infectious diseases. Major drawbacks and limitations of viral gene delivery are low transduction efficiencies and/or cytotoxic effects. The project combines the complementary expertise of two research groups in Virology and Macromolecular Chemistry to systematically identify, synthesize, characterize and optimize self-assembling peptides (SAPs). These SAPs hierarchically self-organize into nanoscopic building blocks and interact with virions to form mesoscopic, functionally active entities that efficiently bind to cells to allow convenient, effective and safe viral gene transfer. The successful development of SAPs enhancing retroviral transduction efficiencies will facilitate and improve future gene delivery approaches in basic research and in clinical applications.

Universität Ulm
Institut für Organische Chemie III
Prof. Dr. Tanja Weil

Universität Ulm
Institut für Organische Chemie III
Dr. Christoph Meier

Universitätsklinikum Ulm
Institut für Molekulare Virologie
Prof. Dr. Frank Kirchhoff

Universitätsklinikum Ulm
Institut für Molekulare Virologie
Prof. Dr. Jan Münch

Kontakt:
Universität Ulm
Institut für Organische Chemie III
Prof. Dr. Tanja Weil
Albert-Einstein-Allee 11, Geb. O25
89081 Ulm
Tel.: 0731 502 2870
Fax: 0731 502 2883
Homepage: http://www.uni-ulm.de/nawi/institut-fuer-organische-chemie-iii/prof-dr-tanja-weil.html

* * * *

Large scale integration of nano-assembly on a chip regulated by artificial gene circuits

Bewilligung: 23.03.2012  Laufzeit:

Biochemical self-assembly techniques, artificial gene regulation and lithographic methods will be combined to emulate biological pattern formation processes on a chip. This is motivated by the fascinating interplay of physical and chemical processes that are utilized during the development and differentiation of multicellular organisms. For the implementation of this goal, a chip surface will be lithographically patterned with "signal generating" and "structure forming" fields. The signal generating fields will contain artificial gene templates, from which RNA signals will be generated by in vitro transcription. RNA signals will diffuse to "structure fields" and trigger molecular patterning "programs". Structure fields will host DNA origami structures, and the RNA signals will determine which molecular structure will be assembled on these origami substrates. The resulting chip will be able to determine its own orientation with respect to its environment and accordingly produce different nanostructures at different positions on the chip. On the long run, this will lead to reconfigurable, context-dependent nanoassemblies that function as autonomous biosensors with potential applications in cell-chip interfacing, cell growth and motility, and tissue engineering.

Technische Universität München
Physik-Department
Zentrum für Nanotechnologie und Nanomaterialien
Lehrstuhl für Bioelektronik
Prof. Dr. Friedrich Simmel
Am Coulombwall 4a
85748 Garching
Tel.: 089 289 11611
Fax: 089 289 11612
Homepage: http://www.e14.ph.tum.de/

The Weizmann Institute of Science, Rehovot
Materials and Interfaces
Prof. Roy Bar-Ziv, Ph.D.
Herzel St.
76100 Rehovot
ISRAEL
Tel.: 00972 8 9342069
Homepage: http://www.weizmann.ac.il/materials/barziv/

* * * *

Single-atomic standby switch with nearly zero power consumption

Bewilligung: 23.03.2012  Laufzeit:  3 Jahre

A standby switch based on a single atomic transistor will be realized. While the project targets the estimated 6.5% power loss in average households due to standby operation of electronic devices it envisions a broader project goal: The first exemplarily demonstration of the potential enabled by a new generation of single atomic devices. The project envisions the development of a prototype device spanning the complete chain of fundamental research and development. In a first phase  a single atomic transistor will be developed, optimized and realized that has previously been demonstrated at KIT. Then it will be integrated within a nano- and microstructured device, and a cascade type electric circuit will be developed in order to enable the reliable "on" and "off" switching of an electric device.

Karlsruher Institut für Technologie (KIT)
Fachbereich Maschinenbau
Institut für Mikrostrukturtechnik
Dr. Hendrik Hölscher

Karlsruher Institut für Technologie (KIT)
Institut für Mikrostrukturtechnik (IMT)
Prof. Dr. Juerg Leuthold

Karlsruher Institut für Technologie
(KIT)
Fachbereich Physik
Institut für Angewandte Physik
Prof. Dr. Thomas Schimmel

Kontakt:
Karlsruher Institut für Technologie (KIT)
Fachbereich Maschinenbau
Institut für Mikrostrukturtechnik
Dr. Hendrik Hölscher
Postfach 36 40
76021 Eggenstein-Leopoldshafen
Tel.: 0721 608 22779

* * * *

A molecular toolkit based on cyclodextrin polymers for surface materials with switchable tribological functions

Bewilligung: 23.03.2012  Laufzeit:  3 Jahre

Aim of the project is a molecular toolkit which allows to integrate cyclodextrin-based macromolecules into surface materials with designated tribological functions. Contacting surfaces are functionalized with the same host molecules. The interaction between the surfaces is mediated by a layer of ditopic guest molecules, whose binding characteristics can be switched by external stimuli such as light or electrochemical potential. The modular system can be adapted to various surfaces and applications without redesign of its basic elements. The integration of the molecular building blocks into the macroscopic system allows for the first time implementation of tribological functions at all length scales, which are demonstrated by mechanical multiscale experiments ranging from single molecule force spectroscopy and high-resolution imaging to macroscopic devices. The aqueous basis of the approach opens a wide field of applications in biomedical technology, for example where fasteners are required that operate without application of normal pressure.

Leibniz-Institut für Neue Materialien, Saarbrücken
Programmbereich Nanotribologie
Prof. Dr. Roland Bennewitz
Campus D2 2
66123 Saarbrücken
Tel.: 0681 9300 213
Homepage: http://www.inm-gmbh.de

Universität des Saarlandes, Saarbrücken
Lehrstuhl für Organische Makromolekulare Chemie
Prof. Dr. Gerhard Wenz
Campus SB, Geb. C4.2
66123 Saarbrücken
Tel.: 0681 302 3449

* * * *

Spin quantum computing based on endohedral fullerenes with integrated single-spin read-out via nitrogen vacancy centres in diamond (extension)

Bewilligung: 22.03.2012  Laufzeit:  3 Jahre

The groundwork for a truly scalable solid-state quantum computer will be laid based on molecular spin qubits in paramagnetic endohedral fullerenes (PEF) that are read out via optically detected magnetic resonance (ODMR) of nitrogen vacancy centres (NVC) in diamond placed beneath the PEF. In the first funding period, the coherent control of NVC with ODMR in a quantum algorithm is demonstrated, decoherence mechanisms are determined for both qubit types and ways to combat them, coherent dipolar coupling between NVC and molecular spins on the surface is achieved, the atomic surface structure of diamond is unravelled, and atomic scale engineering strategies are explored. The second period will be focussed on integrating the PEF qubits in a functional device using a novel approach based on their encapsulation into carbon nanotube peapods. The peapods will be placed atop NVC previously identified using microscopy techniques and local magnetic field gradients will be applied. The milestone for the six year project duration is the demonstration of a quantum operation of several coupled PEF qubits with optical read-out.

Universität Mainz
Fachbereich Chemie
Institut für Physikalische Chemie
Prof. Dr. Angelika Kühnle

Universität Osnabrück
Fachbereich Physik
Experimentalphysik
Prof. Dr. Michael Reichling

Forschungszentrum Jülich GmbH
Peter Grünberg Institut, PGI-6
Dr. Carola Meyer

Universität Mainz
Fachbereich Chemie
Institut für Physikalische Chemie
Dr. Wolfgang Harneit

Kontakt:
Universität Mainz
Fachbereich Chemie
Institut für Physikalische Chemie
Prof. Dr. Angelika Kühnle
Postfach
55099 Mainz
Tel.: 06131 39 23930
Fax: 06131 39 53930
http://www.uni-mainz.de/FB/Chemie/Kuehnle/

* * * *