Integration molekularer Komponenten in funktionale makroskopische Systeme / Integration of Molecular Components in Functional Macroscopic Systems

 

Bewilligungen / Grants 2010


Construction of a hybrid photocatalytic system for hydrogen production

Bewilligung: 28.07.2010  Laufzeit:  3 Jahre

The goal is to construct a molecular device for light-driven production of hydrogen gas. For this purpose two natural enzymes are exploited: photosystem I (PSI), the primary photoreductant in oxygenic photosynthesis, and HydA1, a hydrogen producing [FeFe]-type hydrogenase. Using computational protein design and genetic engineering techniques to introduce specific modifications to HydA1 and PSI, and to add artificial protein extensions an efficient functional interface between the two enzymes will be constructed. This venture is expected result in a working light-driven hydrogen evolving device, which in the longer run may be combined with a water-oxidizing (photo) catalyst that will replace the exogenous electron donor. Furthermore, general rules and guidelines for designing specific protein-protein interfaces that will allow the generation of effective electron-transfer complexes of any desired kind are envisaged.

Universität Bochum
Fakultät für Biologie & Biotechnologie
Lehrstuhl Biochemie der Pflanzen
AG Photobiotechnologie
Gebäude ND 3/125
Prof. Dr. Thomas Happe

The Weizmann Institute of Science, Rehovot
Department of Plant Sciences
Dror Noy, PhD
ISRAEL

University of Washington, Seattle
Biochemistry Institute
Prof. David Baker, PhD
USA

Ansprechpartner:
Universität Bochum
Fakultät für Biologie & Biotechnologie
Lehrstuhl Biochemie der Pflanzen
AG Photobiotechnologie
Gebäude ND 3/125
Prof. Dr. Thomas Happe
Universitätsstraße 150
44801 Bochum
Tel.: 0234 32 27026
Fax: 0234 32 14322
Homepage: http://www.ruhr-uni-bochum.de/pbt/

* * * *

Metal controlled catalytic DNA and DNA-protein nanomachines

Bewilligung: 09.07.2010  Laufzeit:  3 Jahre

The proposal aims at the construction of complex, catalytic ID and 2D DNA nanomachines,controlled by the selective coordination of metal ions. The metal ions will be bound either using canonical bases in a mismatch situation like T:T or C:C, or they will be incorporated with the help of specifically designed and synthesized ligandosides, which are able to bind particularly transition metal ions tightly. The metal ions will function in the DNA structures as 1) centers for catalytic activity, 2) in array format as efficient charge transfer relay systems through the DNA structure, or 3) the empty metal-ion binding sites may serve as an actuator that transfers the information when a metal ion is bound to a catalytic DNA/RNA or protein substructure. The DNA or DNA-protein (hybrid) structures will be assembled to functional 2D and 3D arrays in solution, on surfaces or electrodes. The goal of the research project is to obtain complex autonomous catalytic nanomachines, tightly controlled by outside stimuli.

Universität München
Fakultät für Chemie und Pharmazie
Department Chemie und Biochemie
Bereich Organische Chemie
Prof. Dr. Thomas Carell
Butenandtstraße 5-13 (Haus F)
81377 München
Tel.: 089 2180 77750
Fax: 089 2180 77756
Homepage: http://www.carellgroup.de

The Hebrew University of Jerusalem
Institute of Chemistry
Department of Organic Chemistry
Prof. Dr. Itamar Willner
Givat Ram
91904 Jerusalem
ISRAEL
Tel.: 00972 2 658 5272
Fax: 00972 2 652 7715
Homepage: http://chem.ch.huji.ac.il/willner/

* * * *

Atomic nano assembler

Bewilligung: 09.07.2010  Laufzeit:  3 Jahre

The project is aiming at the realization of an atomic nano assembler, a novel device capable of placing an exactly defined number of atoms or molecules into solid state substrates with sub nano meter precision in depth and lateral position. Current state of the art production techniques do not offer these possibilities and pose a major production problem for the realization of scaled quantum devices. The project is motivated by the quest for novel tailored solid state quan- tum materials generated by deterministic high resolution ion implantation. The major goals are the deterministic generation of colour centers or quantum dots, placing them in special geometries in order to exploit the mutual coupling for the realization of macroscopic functional systems and interfacing them to the macroscopic world with the help of electrode structures, single electron transistors and optical micro cavities. Targeted applications range from quantum repeater, correlated triggered multi photon sources, calibrated single photon sources, quantum computation circuits, sensors with unprecedented sensitivity.

Universität Mainz
Institut für Physik
Arbeitsgruppe Quanten-, Atom- & Neutronenphysik
(QUANTUM)
Dr. Kilian Singer

Universität Mainz
Institut für Physik
Arbeitsgruppe Quanten-, Atom- & Neutronenphysik
(QUANTUM)
Prof. Dr. Ferdinand Schmidt-Kaler

Universität Stuttgart
3. Physikalisches Institut
Prof. Dr. Jörg Wrachtrup

Universität Stuttgart
3. Physikalisches Institut
Dr. Fedor Jelezko

Universität Bochum
Zentrales Labor für Ionenstrahlen
und Radionuklide (RUBION)
Priv.-Doz. Dr. Jan Meijer

Max-Planck-Institut für
biophysikalische Chemie, Göttingen
Karl-Friedrich-Bonhoeffer-Institut
- Abt. NanoBiophotonik -
Prof. Dr. Dr. Stefan W. Hell

Ansprechpartner:
Universität Mainz
Institut für Physik
Arbeitsgruppe Quanten-, Atom- & Neutronenphysik
(QUANTUM)
Dr. Kilian Singer
Staudingerweg 7
55128 Mainz
Homepage: http://www.uni-ulm.de/nawi/nawi-qiv/mitglieder.html

* * * *

Integration of dielectrophoretic deposited carbon nanotubes and their reliability in mechanical sensor systems

Bewilligung: 09.07.2010  Laufzeit:  3 Jahre

The aim of this project is the development of a mechanical sensor based on the piezoresistive effect of semiconducting single wall carbon Nanotubes (SWCNTs). Most publications concerning CNT based sensors have only shown the ability of CNTs to act as a sensitive element, mostly at isolated CNTs with complex technologies for placement and manipulation. The integration of CNTs in a sensor system with a fabrication technology suitable for industrial production, also with regard to reliability aspects, has not been solved yet. The project will go beyond the basic research of CNTs to get them into application. The actuation by applying an axial strain should be achieved by a test structure with capacitive excitation to get reproducible test conditions, concerning the investigation of relevant sensor parameters like piezoresistivity, linearity or long-term stability. The development of an integration technology with processes suitable for industrial fabrication, including a hermetic packaging, is an important objective, too.

Technische Universität Chemnitz
Fakultät für Elektrotechnik
und Informationstechnologie
Zentrum für Mikrotechnologien
Prof. Dr. Thomas Gessner

Technische Universität Chemnitz
Fakultät für Elektrotechnik und
Informationstechnik
Professur für Werkstoffe und Zuverlässigkeit
mikrotechnischer Systeme
Prof. Dr.-Ing. Bernhard Wunderle

Technische Universität Chemnitz
Fakultät für Elektrotechnik und
Informationstechnik
Professur für Mikrosystem- und Gerätetechnik
Prof. Dr.-Ing. Jan Mehner

Ansprechpartner:
Technische Universität Chemnitz
Fakultät für Elektrotechnik
und Informationstechnologie
Zentrum für Mikrotechnologien
Prof. Dr. Thomas Gessner
Reichenhainer Straße 70
09126 Chemnitz
Tel.: 0371 531 24060
Fax: 0371 531 24069
Homepage: http://www.zfm.tu-chemnitz.de/

* * * *

Dynamic force field mapping of living cells in a macro-scale transducer array based on flexible semiconductor nanopillars

Bewilligung: 09.07.2010  Laufzeit:  3 Jahre

The project aims at force field mapping of living cells with a macro-scale transducer. A major goal in biosciences is the detailed understanding of cytoskeleton regulation in living cells. Actin-based force generation and cell motility is central to immune response, cancer metastasis or tissue healing and thus of basic interest for development of advanced biochemical and pharmaceutical cell assays. In this project, we propose flexible micro structures as sensitive force transducer for living cells.

Universität München
Fakultät für Physik
& Center for NanoScience
Nanomechanics Group
Dr. Eva Weig
Geschwister-Scholl-Platz 1
80539 München
Tel.: 089 2180 5793
Fax: 089 2180 3182
Homepage: http://www.nano.physik.lmu.de/nanomech/

Universität München
Fakultät für Physik
& Center for NanoScience
Cell Biophysics Group
Dr. Doris Heinrich
Geschwister-Scholl-Platz 1
80539 München
Tel.: 089 2180 6760
Fax: 089 2180 3182
Homepage: http://www.softmatter.physik.lmu.de/tiki-index.php?page=GroupHeinrichHome

* * * *

Bioinspired organic electronics with self-organizing organic semiconductor-peptide hybrides

Bewilligung:  09.07.2010  Laufzeit:  3 Jahre

Das Vorhaben wurde am 16.12.2011 von Basel nach Zürich umgesetzt.

Aim of this proposal from three research groups is to create an integrated approach using nanostructured materials based on self-assembling organic semiconductor-peptide hybrids for the generation of macroscopic materials that will be applied in organic solar cells and field effect transistors. The research, for which the expertise of all three research groups is crucial will encompass: a) Synthesis of helical peptides covalently and non-covalently functionalized with pi-conjugated thiophene- and phenylene-based moieties with outstanding (optoelectronic and transport properties; the "bio-block" should serve as a matrix and at the same time govern the self-assembly of the hybrid. b) Investigation of self-assembly processes of the biogenic materials in solution, on surfaces and in the bulk; they will control, tune and optimize the desired functions of the organic semiconductors. c) Processing and integration of the novel self-organizing nanostructured hybrid materials into macroscopic organic electronic devices with functions ranging from solar cells (energy conversion) to field-effect transistors (transport).

Universität Ulm
Fachbereich Chemie
Institut für Organische Chemie II
und Neue Materialien
Prof. Dr. Peter Bäuerle

Eidgenössische Technische Hochschule
Zürich
HCI H 313
Laboratorium für Organische Chemie
Prof. Dr. Helma Wennemers
SCHWEIZ

Max-Planck-Institut für Polymerforschung, Mainz
Prof. Dr. Klaus Müllen

Ansprechpartner:
Universität Ulm
Fachbereich Chemie
Institut für Organische Chemie II
und Neue Materialien
Prof. Dr. Peter Bäuerle
Albert-Einstein-Allee 11
89081 Ulm
Tel.: 0731 50 22850
Fax: 0731 50 22840
Homepage: http://www.uni-ulm.de/oc2/

* * * *

Transfer of energy and information in DNA-assembled nanocrystal networks

Bewilligung: 09.07.2010  Laufzeit:  3 Jahre

The interdisciplinary research project aims at exploring the potential of DNA-assembly for the construction of complex networks with photonic functionality. The project scheme encompasses DNA-controlled fabrication of functional components that consist of fluorescent centers such as colloidal quantum dots and metallic nanoparticles as well as their combination into complex networks, the characterization of device functionality with optical spectroscopy, and the theoretical study of fundamental processes associated with individual and coupled nanocomponents. The strategy of assembling photonic networks by making use of functionalized DNA positioning of nanocrystals with nanometer precision represents a novel bottom-up approach to the design of systemic nano-units that can communicate via photons with each other and the macroscopic world. The overriding goal of the project is to establish the scientific basis for the fundamental understanding and experimental realization of DNA-assembled integrated photonic nanosystems for all-optical information processing.

Universität München
Fakultät für Physik &
Center for NanoScience
Nano-Photonics Group
Prof. Dr. Alexander Högele

Universität München
Fakultät für Physik
Lehrstuhl Rädler
Prof. Dr. Tim Liedl

Ohio University, Athens
Department of Physics and Astronomy
Clippinger Research Labs
Prof. Dr. Alexander O. Govorov
USA

Ansprechpartner:
Universität München
Fakultät für Physik &
Center for NanoScience
Nano-Photonics Group
Prof. Dr. Alexander Högele
Geschwister-Scholl-Platz 1
80539 München
Tel.: 089 2180 1457
Fax: 089 2180 3182
Homepage: http://www.nano.physik.uni-muenchen.de/nanophotonics/

* * * *

Nano Microphone

Bewilligung: 09.07.2010  Laufzeit:  3 Jahre

The project goal is to build and test a nano microphone that utilizes a 1 nm thick carbon nanomembrane (CNM), made by polymerizing self-assembled monolayers, as a sensitive diaphragm that converts pressure changes into electrical signals. For this task the molecular CNMs and electronic circuits will be integrated into a functional nano electro-mechanical system (NEMS). The objective is to build a prototype that will be used for sound measurements in air, water, and in cell culture medium near and inside living cells. Furthermore, the intensity and frequency of sounds at different extra- and intracellular locations as well as in different physiological and developmental states of a living cell and during intercellular interactions will be investigated. The microphone will be tested for spatially and timely resolved extra- and intracellular sound measurements. Comparable to the patch-clamp technology, the data acquired by the nano microphone can provide answers to fundamental questions in biology.

Universität Bielefeld
Fakultät für Physik
Lehrstuhl für Physik supramolekularer Systeme
und Oberflächen
Prof. Dr. Armin Gölzhäuser

Universität Bielefeld
Fakultät Biologie, W7-134
Lehrstuhl Zellbiologie
Prof. Dr. Christian Kaltschmidt

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin (PTB), Braunschweig
Fachbereich Quantenelektronik
AG 2.44, Nanostrukturen für technische Anwendungen
Dr. Thomas Weimann

Ansprechpartner:
Universität Bielefeld
Fakultät für Physik
Lehrstuhl für Physik supramolekularer Systeme
und Oberflächen
Prof. Dr. Armin Gölzhäuser
Postfach 10 01 31
33501 Bielefeld
Tel.: 0521 106 5362
Fax: 0521 106 6002
Homepage: http://www.physik.uni-bielefeld.de/pss

* * * *