Integration molekularer Komponenten in funktionale makroskopische Systeme / Integration of Molecular Components in Functional Macroscopic Systems

 

Bewilligungen / Grants 2008


Konferenz "Light-Harvesting Processes - LHP09"

10.03.2009 - 14.03.2009 in Bad Staffelstein

Universität Bayreuth
Lehrstuhl für Experimentalphysik IV
Prof. Dr. Jürgen Köhler
Postfach
95440 Bayreuth
Tel.: 0921 55 4000
Fax: 0921 55 4002

* * * *

Antenna-based molecular optoelectronics

Bewilligung: 05.12.2008  Laufzeit:  3 Jahre

Resonant optical antennae consist of two gold nano wires that are separated by a small feedgap (~1-10 nm) and have a total length close to half of the wavelength (~250 nm). Upon macroscopic illumination such antennae efficiently concentrate light into their nanoscopic feedgap volume providing an absorption cross section at visible to near infrared wavelengths that is considerably larger than the geometrical area of the antenna structure. Vice versa, light generated in the feedgap, e.g. by molecules, is efficiently radiated into the far field. Since optical antennae are two-terminal structures with nanoscopic feedgap, they provide the ideal platform to build devices based on light-induced nonequilibrium electronic transport phenomena in gap-spanning molecules. The project focuses on hybrid nano structures consisting of resonant optical antennae (Hecht group) and functional organic molecules (Würthner group) that exhibit efficient charge separation upon illumination. The concept represents a technical realization of the photosynthetic antenna complex and reaction center.

Universität Würzburg
Fakultät für Physik und Astronomie
Institut für Physik
Lehrstuhl für Experimentelle Physik V
Nano-Optics & Bio-Photonics Group
Prof. Dr. Bert Hecht
Am Hubland
97074 Würzburg
Tel.: 0931 888 5863
Fax: 0931 888 5507
Homepage: http://www.nanoscale-optics.de

Universität Würzburg
Institut für Organische Chemie
Lehrstuhl für Organische Chemie II
Prof. Dr. Frank Würthner
Am Hubland
97074 Würzburg
Tel.: 0931 888 5340
Fax: 0931 888 4756
Homepage: http://www-organik.chemie.uni-wuerzburg.de/ak_wuert/

* * * *

Spin quantum computing based on endohedral fullerenes with integrated single-spin read-out via nitrogen vacancy centres in diamond

Bewilligung:  05.12.2008  Laufzeit:  3 Jahre

Das Vorhaben wurde am 08.03.2012 von Berlin nach Mainz umgesetzt.

The project wants to establish a sound basis for a truly scalable solid-state quantum computer based on molecular spin qubits in paramagnetic endohedral fullerenes (PEF)that are optically read out via pulsed optically detected magnetic resonance (ODMR) of shallow nitrogen vacancy centres (NVC) in diamond. A fundamental demonstration of the atomic scale engineering principles and the read-out scheme is targeted for the first application period (three years), while a small demonstrator device with approximately five coherently manipulated qubits is aimed at for the entire project period (six years). Work in the first application period will be focused on passing three milestones representing achievements necessary for the construction of the demonstrator device: Positioning PEF atop NVC,demonstrating spin-spin coupling of the PEF with the NVC and the evaluation of the coherence time in the spin systems by ODMR that will critically determine the Scalability limits of the read-out concept.

Universität Mainz
Fachbereich Chemie
Institut für Physikalische Chemie
Dr. Wolfgang Harneit

Universität Mainz
Fachbereich Chemie
Institut für Physikalische Chemie
Prof. Dr. Angelika Kühnle

Universität Osnabrück
Fachbereich Physik
Experimentalphysik
Prof. Dr. Michael Reichling

Kontakt:
Universität Mainz
Fachbereich Chemie
Institut für Physikalische Chemie
Prof. Dr. Angelika Kühnle
Postfach
55099 Mainz
Tel.: 06131 39 23930
Fax: 06131 39 53930
Homepage: http://www.uni-mainz.de/FB/Chemie/Kuehnle/

* * * *

Rolled-up integrative bioanalytic microsystem for a single cell

Bewilligung: 05.12.2008  Laufzeit:  3 Jahre

In this project a unique bioanalytic microsystem for the spatial and temporal control of single cell growth and analysis will be developed. In such a system fluidic, optical, electronic, magnetic and biological components will be integrated into single rolled-up tubes, which are processed in parallel with high throughput and excellent reproducibility. This new type of highly integrative "lab-on-a-tube" represents an intriguing multifunctional platform for basic biological insights into cells and tissues, as well as for cell-based sensors with biochemical, biomedical and environmental functions. Rolled-up nanotechnology, which forms pre-stressed and functionalized nanomembranes into tubular micro-/nanostructures, has offered great interdisciplinary functionalities in electronics, fluidics and photonics so far.

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden IFW
Institut für Integrative Nanowissenschaften (IIN)
Strained Nanoarchitectures
Direktor des IIN
Prof. Dr. Oliver G. Schmidt
Postfach 27 01 16
01171 Dresden
Tel.: 0351 465 9800
Fax: 0351 465 9782
Homepage: http://www.ifw-dresden.de/institutes/iin

* * * *

Nanometer-sized diamonds for drug delivery and magneto-optical imaging

Bewilligung: 05.12.2008  Laufzeit:  3 Jahre

Color centers in diamond nanocrystals are a new class of fluorescent and spin markers that attract significant interest due to biochemical inertness, matchless photostability and biocompatibility. It was demonstrated recently by the applicants that fluorescing diamond nanocrystals containing defects can be used as markers for novel magneto-optical imaging with nanometer resolution. The main idea behind this project is to use the excellent spin properties of diamond defects for understanding the functional dynamics of proteins with sub-nanometer resolution. This technique will be applied to unravel the details of rotary motion and the elastic energy storage mechanism of a single biological nanomotor FoF1-ATP synthase. In addition, surface-modified nanodiamonds will be investigated as drug-delivering nanoparticles in living cells, and successful delivery is observed simultaneously with tracking and ultrahigh-resolution localization of the single markers on long time scales.

Universität Stuttgart
3. Physikalisches Institut
Prof. Dr. Jörg Wrachtrup

Universität Stuttgart
3. Physikalisches Institut
Dr. Fedor Jelezko

Universität Stuttgart
3. Physikalisches Institut
Dr. Michael Börsch

Ansprechpartner:
Universität Stuttgart
3. Physikalisches Institut
Prof. Dr. Jörg Wrachtrup
Postfach
70550 Stuttgart
Tel.: 0711 685 65278
Fax: 0711 685 65281
Homepage: http://www.pi3.uni-stuttgart.de/

* * * *

Nano-apertures loaded with individual molecules

Bewilligung: 05.12.2008  Laufzeit:  3 Jahre

Das Vorhaben wurde am 01.03.2011 von München nach Braunschweig umgesetzt.

Miniaturization of biochemical and pharmaceutical assays to an ultimate level of sensitivity is a prerequisite to study interactions and activities of single molecules at physiological concentrations in a highly paralleled format. In this project a combined top-down and bottom-up strategy is proposed to overcome the fundamental gap between the nanomolar concentration regime of current optical single-molecule spectroscopy techniques and the nano- to millimolar dissociation constants of typical biomolecular interactions. Single molecules will be placed in nano-apertures, which confine the detection to sub-attoliter volumes. Fluorophores will act as probes to derive a first spatially resolved fluorescence map within the nano-apertures. With this new experimental platform previously impossible applications will be exploited such as a single-molecule HIV-protease inhibitor screening-assays or the direct detection of the force-induced ATP binding to titin kinase.

Technische Universität Braunschweig
Institut für Physikalische und Theoretische Chemie
Lehrstuhl Biophysikalische Chemie
- NanoBioSciences
Prof. Dr. Philip Tinnefeld
Hans-Sommer-Straße 10
38106 Braunschweig
Tel.: 0531 391 5330
Fax: 0531 391 7305
Homepage: http://www.tu-braunschweig.de/pci/forschung/tinnefeld/index.html

Universität München
Sektion für Physik
Lehrstuhl für Angewandte Physik
Biophysik & Molekulare Materialien
Prof. Dr. Hermann Eduard Gaub
Amalienstr. 54
80799 München
Tel.: 089 2180 3172
Fax: 089 2180 2050
Homepage: http://www.biophysik.physik.uni-muenchen.de/

* * * *

"International workshop on Nanoferronics: Novel multifunctional metal-oxide tunneljunctions relevant for future devices"

09.10.2008 - 10.10.2008 in Jülich

Forschungszentrum Jülich GmbH
Institut für Festkörperforschung
Quanten-Theorie der Materialien (IFF 1)
Dr. Marjana Lezaic

National Research Council (CNR), L'Aquilla
Istituto Nazionale per la Fisica della Materia
(INFM)
CASTI Regional lab.
Dr. Silvia Picozzi
ITALIEN

Forschungszentrum Jülich GmbH
Institut für Festkörperforschung
Quanten-Theorie der Materialien (IFF 1)
Prof. Dr. Stefan Blügel

Forschungszentrum Jülich GmbH
Institut für Festkörperforschung
Institut für Elektrokeramische  Materialien (IEM)
Priv.-Doz. Dr. Hermann Kohlstedt

Ansprechpartner:
Forschungszentrum Jülich GmbH
Institut für Festkörperforschung
Quanten-Theorie der Materialien (IFF 1)
Dr. Marjana Lezaic
Postfach
52425 Jülich
Tel.: 02461 61 5369
Fax: 02461 61 2850
Homepage: http://www.fz-juelich.de/iff/d_th1_staff/#post

* * * *