INTERNATIONAL CONFERENCE ON NEUROMORPHIC, NATURAL AND PHYSICAL COMPUTING

## Program of NNPC 2023

## General program

| Day 1: 25/10/2023                                                                                          |             |  |
|------------------------------------------------------------------------------------------------------------|-------------|--|
| Welcome address: VW-Foundation and conference chairs                                                       | 8:45 - 9:00 |  |
| Session 1/1: THeory: new concepts and mathematical foundations. Chair: Anna Levina                         | 9:00-10:30  |  |
| Keynote: Christof Teuscher, Material and physical reservoir computing for beyond-CMOS electronics          | 9:00-10:00  |  |
| TH.C1: Johannes Zierenberg, Flexible tuning to task requirements via input statistics, local learning, and | 10:00-      |  |
| homeostatic plasticity                                                                                     | 10:30       |  |
|                                                                                                            | 10:30-      |  |
| Coffee break                                                                                               | 11:00       |  |
| Cassion 1/2. Theorem now concerns and mothematical foundations                                             | 11:00-      |  |
| Session 1/2: Theory: new concepts and mathematical foundations                                             | 11:00       |  |
| in.cz. Guillaume Pourcei, Recurrent Neural Networks. from prediction to representation, a dynamical        | 11:00-      |  |
| systems perspective                                                                                        | 11.30       |  |
| TH C3 <sup>.</sup> Gouhei Tanaka, Diverse-timescale echo state networks for multiscale modeling            | 12.00       |  |
|                                                                                                            | 12:00-      |  |
| Lunch break                                                                                                | 13:30       |  |
|                                                                                                            | 13:30-      |  |
| Session 2: Physical Substrates: materials, devices, micro-architectures. Chair: Thomas Van Vaerenbergh     |             |  |
|                                                                                                            | 13:30-      |  |
| Keynote: Julie Grollier, The power of Equilibrium Propagation for training neuromorphic systems            | 14:30       |  |
| PS.C1: Melika Payvand, Dendritic computation through exploiting resistive memories as both delays and      | 14:30-      |  |
| weights                                                                                                    | 15:00       |  |
|                                                                                                            | 15:00-      |  |
| PS.C2: Anas Skalli, A high performance fully tunable laser-based neural network                            | 15:30       |  |
|                                                                                                            | 15:30-      |  |
| PS.C3: Hermann Osterhage, Neuromorphic matter bottom-up constructed from individual atoms                  | 16:00       |  |
|                                                                                                            | 16:00-      |  |
| Cottee discussion plus Plenary I: John Paul Strachan (17:00-18:00)                                         | 18:00       |  |
| Dinner                                                                                                     | 18:00-      |  |
|                                                                                                            | 19:30       |  |
| Evening lectures Vues Freques From metershore of the human mind to the muth of disited consciousness       | 19:30-      |  |
| Evening lecture: Tves Fregnac, from metaphors of the human mind to the myth of digital consciousness       | 20:30       |  |

-INTERNATIONAL CONFERENCE ON NEUROMORPHIC, NATURAL AND PHYSICAL COMPUTING

....

| Day 2: 26/10/2023                                                                                                       |        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
|                                                                                                                         | 9:00-  |  |  |  |
| Session 3/1: Guides from Nature: neuroscience, theoretical biology, complex systems. Chair: Mihai Petrovici             | 10:30  |  |  |  |
|                                                                                                                         | 9:00-  |  |  |  |
| Keynote: Walter Senn, A theoretical physics guide to neuroscience and cognition                                         |        |  |  |  |
| GN.C1: Younes Bouhadjar, Bio-inspired sequence learning mechanisms and their implementation in a                        |        |  |  |  |
| memristive neuromorphic hardware                                                                                        |        |  |  |  |
|                                                                                                                         | 10:30- |  |  |  |
| Coffee break                                                                                                            | 11:00  |  |  |  |
|                                                                                                                         | 11:00- |  |  |  |
| Session 3/2: Guides from Nature: neuroscience, theoretical biology, complex systems.                                    | 12:00  |  |  |  |
|                                                                                                                         | 11:00- |  |  |  |
| GN.C2: Kevin Max, Learning efficient backprojections cross cortical hierarchies in real time                            | 11:30  |  |  |  |
| GN.C3: Tanguy Cazalets, New insights on homeostatic activity-dependent structural plasticity in rate based              |        |  |  |  |
| neural networks                                                                                                         | 12:00  |  |  |  |
|                                                                                                                         | 12:00- |  |  |  |
| Lunch break<br>Cassian A. Saalian Una madular architectures, consolar data structures and anoscenes. Chair: Christenhar | 13:30  |  |  |  |
| Session 4: Scaling Up: modular architectures, complex data structures and processes. Chair: Christopher<br>Bennett      |        |  |  |  |
|                                                                                                                         | 13:30- |  |  |  |
| Keynote: Brad Aimone, The Pursuit of the Brain's Ubiguitous Stochasticity                                               | 14:30  |  |  |  |
|                                                                                                                         | 14:30- |  |  |  |
| SU.C1: Alpha Renner, Neuromorphic hyperdimensional visual scene factorization                                           | 15:00  |  |  |  |
|                                                                                                                         | 15:00- |  |  |  |
| SU.C2: Miguel C Soriano, Physical implementation of a deep recurrent neural network folded in time                      | 15:30  |  |  |  |
|                                                                                                                         | 15:30- |  |  |  |
| SU.C3: Ria Talukder, Large scalable electro-optical spiking neural network                                              | 16:00  |  |  |  |
|                                                                                                                         | 16:00- |  |  |  |
| Coffee discussion                                                                                                       |        |  |  |  |
|                                                                                                                         | 17:00- |  |  |  |
| Poster session I                                                                                                        | 19:00  |  |  |  |
|                                                                                                                         | 19:00- |  |  |  |
| Banquet                                                                                                                 | 21:00  |  |  |  |



| Day 3: 27/10/2023                                                                                                      |                 |
|------------------------------------------------------------------------------------------------------------------------|-----------------|
| Session 5/1: APplications: demonstrators, use-cases, user interfacing, hybrid solutions. Chair: Xavier Porte           | 9:00-10:30      |
| Keynote: Chiara Bartolozzi, Neuromorphic engineering to improve robotic perception                                     | 9:00-10:00      |
| AP.C1: Fabian Boehm, Teaching Ising machines new tricks: Accelerating Monte-Carlo sampling and machine learning        | 10:00-<br>10:30 |
| Coffee break                                                                                                           | 10:30-<br>11:00 |
| Session 5/2: APplications: demonstrators, use-cases, user interfacing, hybrid solutions.                               | 11:00-<br>12:00 |
| AP.C2: Nathan Leroux, Spiking Online Transformer with for Fast Prosthetic Hand Control                                 | 11:00-<br>11:30 |
| AP.C3: Mustafa Yildirim, Nonlinear Computing with Lithium Niobate Waveguide                                            | 11:30-<br>12:00 |
| Lunch break                                                                                                            | 12:00-<br>13:30 |
| Plenary II: Harish Bhaskaran, Higher-dimensional processing using a photonic tensor core with continuous-<br>time data | 13:30-<br>14:30 |
| Coffee discussion                                                                                                      | 14:30-<br>15:30 |
| Poster session II                                                                                                      | 14:30-<br>17:00 |
| Poster prize and closing remarks                                                                                       | 17:30-<br>18:00 |



## Poster presentations

|        | Demois Lance          | Study of the C-band dynamical response of an injection locked LA-EEL for fully                                   |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------|
| AP.P1  | Romain Lance          | Integrated telecommunication data processing                                                                     |
| AP.P10 | Andre Walter          |                                                                                                                  |
| AP.P11 | Hizzani               | Comparison and Understanding                                                                                     |
| AP.P2  | Oliver Neill          | Gradient-Free Optimisation of Photonic Neural Networks                                                           |
| AP.P3  | Zolfagharinejad       | Brain-Inspired Computing Systems                                                                                 |
| AP.P4  | Mingwei Yang          | Optical Convolutional Neural Network with Atomic Nonlinearity                                                    |
| AP.P5  | Julian Goeltz         | Gradient-based methods for spiking physical systems                                                              |
| AP.P6  | Melika Payvand        | GMap : An Open-source Efficient Compiler for Mapping any Network onto any Neuromophic Chip                       |
| AP.P7  | Iker Oguz             | Programming High-Dimensional Optical Nonlinearities with Online Modelling                                        |
| AP.P8  | Enrico Picco          | High Speed Neuromorphic Computing for Real-Time Applications                                                     |
| AP.P9  | Dana Hariga           | Classification of sEMG signals for hand prostheses without preprocessing                                         |
| GN.P1  | Viktoria Zemliak      | Spike synchrony as a measure of Gestalt structure                                                                |
| GN.P10 | Dongshu Liu           | Unsupervised Equilibrium Propagation                                                                             |
| GN.P11 | Atilla Schreiber      | Biologically-plausible hierarchical chunk learning on mixed-signal neuromorphic hardware                         |
| GN.P2  | Tim Bax               | Dendritic Computing                                                                                              |
| GN.P3  | Stefanteodor<br>Iacob | Distance-Based Delay Networks                                                                                    |
| GN.P4  | Aditya Kar            | The Terabrain Project: Simulating billions of spiking neurons on standard computer hardware                      |
| GN.P5  | Satoshi Sunada        | Neural time-delay dynamics trained without backpropagation                                                       |
| GN.P6  | Pascal Nieters        | From dendritic computation to symbolic operation                                                                 |
|        |                       | Sensitivity Analysis of Point Neuron Model Simulations Implemented on                                            |
| GN.P7  | Alex Dimitrov         | Neuromorphic Hardware                                                                                            |
| GN.P8  | Hazem Toutounji       | Unlacking Deservoir Computing's Detential: Nen Dendem Connectivity Detterne                                      |
| GN.P9  | Hadaeghi              | and Memory Capacity                                                                                              |
| PS.P1  | Albert S Y Wong       | Brain-inspired Computable Chemical Reaction Networks                                                             |
| PS.P10 | Martin Salinga        | Phase Change Materials for Physical Computing                                                                    |
| PS.P11 | Melika Payvand        | Few-shot learning on brain-inspired small-world graphical hardware                                               |
| PS.P12 | Mohab Abdalla         | Exploring the bandwidth-limited readout in coherent photonic reservoir<br>computing                              |
| PS.P13 | Niclas Goetting       | Exploring quantum mechanical advantage for reservoir computing                                                   |
|        |                       | Optical Computing in Silicon Photonics: Self-Adapting Ring Networks and                                          |
| PS.P14 | Peter Bienstman       | Quantum Recurrent Neural Networks<br>Reservoir Computing with Spin Wayes Propagating via a Continuous Magnetic   |
| PS.P15 | Ryosho Nakana         | Film on a Chip                                                                                                   |
| PS.P16 | Simon Brown           | Networks of Nanoparticles and Nanowires for Brain-like Computation                                               |
| PS.P17 | Toon Sevenants        | Influence of annealing schemes on the success rate of Ising machines                                             |
| PS.P2  | Alessandro Lupo       | Deep neuromorphic computing with optical frequency combs                                                         |
| PS.P3  | Andreas Grenmyr       | Synapses with homo/hetero-synaptic plasticity enabled by ferroelectric<br>polarization modulated Schottky diodes |
| PS.P4  | Corentin Delacour     | A Physical Computing Approach based on Coupled Oscillators for<br>Nondeterministic Polynomial-time Hard Problems |



INTERNATIONAL CONFERENCE ON NEUROMORPHIC, NATURAL AND PHYSICAL COMPUTING

| PS.P5   | Frederik Lohof   | Information dynamics and effects of disorder in quantum reservoir computing      |
|---------|------------------|----------------------------------------------------------------------------------|
|         |                  | Broadband Frequency-Division Multiplexing in Visually Evoked Potentials          |
| PS.P6   | Giulia Marcucci  | Enables Image Transmission and Physical Computing                                |
|         | Jeremei          | Training an Ising Machine with Equilibrium Propagation                           |
| PS.P7   | Laydevant        |                                                                                  |
| PS.P8   | Josh Mallinson   | Reservoir Computing using Percolating Networks of Nanoparticles                  |
|         |                  | Programming Spatial-Spectral Optimization for Multimode Fiber- Based Optical     |
| PS.P9   | Leo Jih Liang    | Learning Machines                                                                |
|         |                  | Routing brain traffic through the von Neumann bottleneck: Optimization           |
|         |                  | strategies for efficient spike delivery in large-scale network simulations on    |
| SU.P1   | Jari Kunkel      | conventional hardware                                                            |
|         |                  | Physical implementation of a deep recurrent neural network folded in time        |
| SU.P10  | Miguel C Soriano |                                                                                  |
|         | Diego Arguello   | On the Noise Robustness of Analog Complex-Valued Neural Networks                 |
| SU.P11  | Ron              |                                                                                  |
| SU P12  | Steven Abreu     | Developing a Framework for Programming Physical Computing Systems                |
| 00.1.12 | Olovoli / Korou  | Mathematical-Write: a counterpoint of analog computing crossbars exemplified     |
| SIL P2  | Ranhael Cardoso  | hy photonics                                                                     |
| 50.12   | Raphael Caluoso  | Derformance Renchmarke for Neuromerphic Systems at Seele                         |
| SU.P3   | Johanna Senk     | Performance benchmarks for Neuromorphic Systems at Scale                         |
| SLI P4  | lan Finkheiner   | Exploiting Sparsity for Accelerated SNN Training on Graphcore IPUs               |
| 00.14   |                  | Artificial Neural Microcircuits as Building Blocks for Neuromorphic Systems      |
| SU.P5   | Andrew Walter    |                                                                                  |
|         |                  | Next generation of 3D printed photonic circuits for scalability and high-        |
| SU.P6   | Adria Grabulosa  | performance hybrid integration                                                   |
|         |                  | Additional Parallelism for WDM-based Photonic Integrated Convolutional Neural    |
| SU.P7   | Lingduo Li       | Network                                                                          |
|         | Elizabeth        | A 3-layer injection-locked multimode semiconductor laser neural network          |
| SU.P8   | Robertson        |                                                                                  |
|         |                  | Self-assembly of nanoobjects as a bottom-up strategy for the elaboration of      |
| SU.P9   | Simon Tricard    | neuromorphic materials                                                           |
| TH P1   | Radu Cimpean     | Exploring and updating the mathematical model behind the olfactory sense         |
|         | Fran Manundaviah | Artificial neural networks using stochastic resonances                           |
| 10.010  |                  | Neuromorphic Computing: History, Current Status, and Euture                      |
| TH.P2   | Piper Powell     |                                                                                  |
| TH.P3   | Lina Jaurigue    | Explicit memory tuning for reservoir computing optimization                      |
|         | Fernandes da     | Chemical Reaction Hypergraphs: Toward Efficient Computing                        |
| TH.P4   | Cunha            |                                                                                  |
| TH P5   | Jamie Lohhoff    | Optimizing Gradient Accumulation in Spiking Neural Networks with AlphaGrad       |
| TUDO    |                  | Recurrent Neural Networks with intrinsically critical dynamics                   |
| TH.P6   |                  |                                                                                  |
| T11 57  |                  | Time scale-plasticity learning rule for dendritic neuron model to achieve online |
| TH.P7   | Nosrat Nezami    | Time-invariant sequence processing                                               |
|         |                  | Using continuation methods to analyse the difficulty of problems solved by Ising |
| IH.P8   | Jacobus Lamers   | machines                                                                         |
| TH P9   | Anne-Men Huiizer | Networks of memristors and the effective memristor                               |