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Outline

Historical problems and brilliant modelling
approaches

Recent additional problems

Beginning of systematic modelling — linear
systems science

More advanced modelling — complex
systems science: from nonlinear dynamics
to complex networks

Challenges (open problems) and Outlook




What I1s the Earth's Human
Carrying Capacity?

Condition: Appropriate for both —
Earth and humans



The epoch of brilliant approaches

First conceptual models



Modelling Problem

o first principles are known in physics or
chemistry - basic laws (well accepted),
e.g. mechanics, electromagnetism, fluid
dynamics, atmospheric dynamics

 But NOT In soclio-economy etc.

= Modelling needs different approaches, in
particular: conceptual models vs.
formal (mathematical) models



Forecasting maximum world population

possible
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Fig. 3. Estimates of how many people Earth can
support, by the date at which the estimate was
made. When an author gave a range of estimates
or indicated only an upper bound, the highest
number stated is plotted here (55).

Recent estimates vary
between

< 1 Billion and
> 1000 Billion

J. E. Cohen, Science
(1995)



First Estimate: Antoni van Leeuwenhoek (1679) |

His Approach (model): N =N(h) * R
e population of Holland N(h) that time (1 Million people)

e R ratio of Earth’s inhabited land area to Holland’s
area (he estimated as 13,385)

* Note that this is
- a wrong model
- with wrong specific parameters,

but leading to an acceptable result (from today’s
knowledge)!!!




Today s Parameters

e N(h) = 16.493.156 (Jan 2009)
e R =148.900.000/41.528 = 3.585,5

> N = 59.136.749.383 (59 billion)



A. Leeuwenhoek — a serious scientist

Eichmeister (calibrator) and
Landvermesser (surveyor) in
Delft

built microscopes with high
precision

Several discoveries in biology,
e.g.
-bacteria in his mouth,

AMNTONIUS & LEEUTWENHOEER
o CAwbner Ao

-fleas and mussels are from eggs
(not spontaneously from sand or

dirt)
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Infering Models for Diagnostics/Predictions even
from Data — A substantial puzzle

(and understanding underlying phenomena)

IS highly non-trivial. It requires more than data
mining techniques



Next step: include time evolution

Population Dynamics



Similar approach, but a bit more advanced:

N(t) population at time t

Rate of change: dN/dt = births — deaths + migration

A) Simple case: no migration, birth and death proportional to N:
dN/dt = bN —dN = N(t) = N(0) exp (b-d)t

b, d > 0, N(O) initial population

If b >d — population gows exponentially
b>d : dies out

Too simple??? World population in billions
mid17th 19t 1927 1960 1974 1987 2000 2050
0.5 1 2 3 4 5 6.3 10*

Exponential since 1900, but not forever (probably...)!!!

2100

11.2*



Conclusion 2:

Some restrictions necessary to
iInclude



Adjustment to exponential growth —
self-limited process (Verhulst 1838)

Logistic Growth



dN/dt =r N (1 — N/K)
per capita (pro kopf) birth rate: 1-N/K

K carrying capacity of environment
Two steady states N = O (unstable) ,
N = K (stable)

N(t) = N(0) K exp (rt) / { K+ N(O) [exp (rt) — 1]} =
K ast=>» «



Recent: additional factors to
Include

* Further resources: Energy

 Present to humans around 1800:
fossile energy (coal, gas, oil)
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Long term trends show clear
evidence of increase
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Challenge:

Built: Earth System Model

(Whole Earth Model,
Integrated Assessment Model)

To Include various Iinteractions
(feedbacks)



Use of (super) computers



Computers are useless. They
only provide answers.

(Pablo Picasso)

Conclusion 3: to discuss In
working group



The epoch of systematic
mathematical approaches



(Linear) Systems Science —
First Formal Models (1960ies -80ies)

Input: X Black Box A Output: y

Black-Box-Models

y =AX



Model (Operator) A

 Regression (most linear)
e Differential equation (most linear)

Typical mathematical problem:
e Given: output y

 Wanted (to estimate): input x and model
(parameter) A

* Inverse problem (mostly ill-posed) —
regularization techniques



Stochastic Model: y = A X + noise

 Type 1: autoregressive processes (order p)
X =1 X+ + X+ 2 {Z} ~WN(0,5%)
 Type 2: moving average processes (order q)

Xi= Zi+ 01 Zig + oo+ Uq g {4 ~ WN(O,09).



 Type 3. ARMA processes (order p, q)

Xt 'flxt_l T fpxt_p — Zt+ ql Zt-l + " + qq Zt-q

e Type 4, 5....
* Mostly: linear, causal (invertible)



Autoregressive models

e Simple recursive parameter estimation

M
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* \Well developed order selection (p, q)
techniques for ARMA



Modell-Selektionskriterien fir ARMA [p, g]-Prozesse mit Residualvarianz 67

sind
(1) das AIC-Kriterium (Akaike’s Information Criterion)

.+,_
AIC(p, g):=1né?, +2 2 - 9

(2) das BIC-Kriterium (Bayesian Information Criterion)
(p+¢q)InN
N ;
(3) das HQ-Kriterium (Hannan-Quinn-Kriterium)
2(p+¢q) - c-In(InN)

BIC(p,q):=1né; , +

HQ(p,q):=1né%  + mit ¢ > 1.

N

[6.3.3.5]

[6.3.3.6]

[6.3.3.7]

Auszuwahlen ist dabei jeweils dasjenige ARMA [ p, ¢]-Modell, fiir welches das

verwendete Kriterium minimal ist.




General Properties

* Well developed statistical evaluation (tests
of significance)

* |nstructive presentation in frequency
domain (power spectra)

* Applicable for rather short observations
(time series) = sliding (windowed)
analysis of ,changing“ processes (non-
stationary)

* Generalized to multivariate processes
(several parameters)
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Problems

 No nonlinear feedbacks between different
subsystems possible (typical situation in
most applications)

* Nonlinear self-limited growth not included
(e.g. logistic growth)

 Generated dynamics rather simple —  not
complex

=» Conclusion 4: linear black box approach
very limited potential for our purpose



Complex Sytems Science —

Part 1. Nonlinear Dynamics
(1980ies — about 2000)

Low-dimensional nonlinear
systems (feedbacks)



example:
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Figure 1: Bifurcation diagram for the logistic map in the interval [3.5.4] (Feigenbaum diagram).




New Methods & Phenomena

~ractal objects (fractal dimensions)
Deterministic Chaos
_Imited Predictability (Lyapunov exponents)

RIich Dynamics (steady state, periodic, quasi-
periodic, chaotic, intermittent)

Rapid Qualitative Transitions — Bifurcations —
Tipping Points (regular — chaos, chaos — chaos)




New Methods & Phenomena

* Noise-induced Order (stochastic resonance -
SR, coherence resonance - CR)

« Complex Synchronization (complete,
generalized, phase)

* Recurrence (but not long-term predictable)



Poincaré‘s Recurrence

§
L/
YA
Crutchfield 1986,
Scientific American

Arnold‘s cat map




Poincare‘s Recurrence - demo




Bridge Opening

 Unstable modes always there

 Mostly only in vertical direction
considered

 Here: extremely strong unstable lateral
Mode — If there are sufficient many
people on the bridge we are beyond a
threshold and synchronization sets In

(Kuramoto-Synchronizations-Transition,
book of Kuramoto in 1984)



Stabilized afterwards
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Applications & Potentials

e Controlling chaos
e Broad band information transfer

 Ensemble Averaging for Medium Range
Weather Forecast — data assimilation

* ElI Nino — Southern Oscillations (ENSO);
Solar Activity — limited predictability

« ENSO - Indian Monsoon synchronization

e Synchronized complex population dynamics
(lynx vs. hare dynamics in Canada)

» Dansgaard-Oschger events - SR
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Limits
Conclusion 5: Restricted to rather low-dimensio-
nal systems&only a few aspects of large systems

New challenges from various aspects:

 New era of spatio-temporal measurement
techniques (satellites, medicine...)

 New era of communication (SMS, internet,
twitter...)

o Substantially stronger interrelation among
subsystems



Complex Systems Sciences

Part 2. Complex Networks
(about 2000 - ?7??)
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